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L INTRODUCTION

HE theory of the various moleculnr beam magnetic
resonance methods and of the resonance absorp-
tion and nuclear induction expériments is usually
chiefly concerned with the calculation of the efect of
weak oscillating or rotating magnetic fields on nuclear
magnetic moments in the presence of a strong constant
magnetic fielkl. Some of the simplest problems of this
sart were first solved by Rabi! Schwinger,? and Blach?s
by a straightforward quantum-mechanical caleulation
of transition probabilities or by related methods. Al-
though these methods are consistent with and closely
related to the one described here, they are not as well
suited to the simplified analysis of many more eom-
plicated problems. The extensive and esplicit use of
the rotating coordinate system was first developed by
fuccessive cootributions of Bloch! and the present
authars? over eight years ago. Since the method was
originally considered chiefly as a new technique of
caleulation rather than s an intrinsically new result, no
altempt was made to describe the method in the
literature. However, in subsequent lime it has become
Apparent that the value of the method in nuclear res-
L L Rabi, Phys. Rev, 51, 652 (1937},
) 1 1. Schwinger, Phys Rev. 51, 648 (1937); Fabi, Ramaey, and
thwin y provate communications and lectyre notes {1945 on ).
R 25 Elﬂrxf aad A. I. Siegert, Phys. Rev, 57, 532 (1940); L.
Alvares and F, Bloch, Phys. Rev. 57, 111 (1940).

*F. Bloch, Phys Fev. 70, 450 (1546); R. K. Wangsnes and
E. Bloch, Phys Rev, 89, 718 (1953),
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The uss of & rolating coordinate system to solve magnetic resonancs problems {8 deseribed. On & coardi.
eale sysiem rotating with the applied rotating mugnetic fieki the elfective feld is redoced by the Tarmar
Geld apprapriate to the rotational frequency. However, on ssich a coordinate system problems can more
seadily be salved since these i no time vartfion of the Geld, The salution in a statianary frame of seference
is then obtained by a transformation from the rotating to the stitionary frame. This procedure {3 equally
valid in classical and in quantum-mechanical problems. The methed is applied both to the molecular beam
magnetic resonance method amd 18 resenance absorption sid fuclear induction taperiments.

onance calcufations is so great that a detailed descrip
tion of il is needed. This need is sufficiently great that
several authors™" have had to include a partial descrip-
tion of the rotating coordinate methad in order to
describe their experiments effectively.

The mtating coordinite system method is equally
applicable to classical and quantum-mechanical systems.
Because of the great simplicity and extensive appli-
cability of the classical description it will be given first
in detxil while the quantum-mechanical case will be
considered in the last section of this paper,

I[I. CLASSICAL FORMULATION OF ROTATING
COORDINATES PROCEDURE

Consider 2 system consisting of one or mare nuclei or
atoms all of which bave the same constant gyromag-
netsc ratio y. Then, if | is the nuclear angular momen
tum in units of &, the nuclear magnetic moment is
yhl and the equation of motion of the system in a sta-
timniiry coordinate systém is

dl
b= X H=yAXH. (1)

But if a/a¢ represenis differentiation with respect to
a coordinate system that is rotating with angular

Y N. Bloembergen, Nudear Wapnetic Relaxation (Schatanes and
Jens, Utrecht, Hallssed).

*H. C. Torrey, Phya, Bev, 76, 1060 {1949}

'E. L. Haho, Phys. Rev. BO, 580 {1950),
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where I an hoth sides of the equation 15 the angular
momentum a5 measured by the stationary observer,
bt the d1/8 represents bow = rotating observer would
find the stationary observer’s I 1o vary az 2 funclion
of time. By rearrangement Ed. (2) becomes

al
h—= k3¢ (H 4 w/y) = Al H,,
ai

L4}

where H,. is the eféctive feld in the rotating coordinate
syelem and s defined by

H..=H+w/y. (1)

In other words, the effect of the rolation of the coord:-
nate system is merely to change the effective feld by
the added term w/y.

This result can readily be applied to interpret the
effect of the rotating magnetic fGelds used in the varisus
nuclear resonance experiments. In most of thess there
i5 & constant field Hy abowt which another {usoally
much weaker) field H; perpendicular to Hy rotates with
angular velacity —w, However, fram the point of view
of 4 coordinate system rotating with H;, none af the
magnetic fields are changing as a function of time
Therefore, the axes of the rotating coordinate system
can he selected so that

Hi=Hgk, Hi=Hd, w==—uk: {5
Then on the rodating coordinate sysiem,
H.= (Bi—w/v)k+Ha )]

as i shown schematically in Fig. 1. Since this feld =
constant in time the solotion to the molion af the

AND SCHWINGER

system is much simpler in the rolating coordinate sys
tern than in the stationary system: From Eq. (6) o
follows that the magnitude of the efective magnetic
field 1s

| H ol =L {(Hu—a/ ¥+ H P = oy, {7)

where
g [ (up—e) 4 (v H ) o [ (og— ) (el JHPT (8)

with ws by defininition being M5 Likewise the angle
& of H,, relative 10 Hy is given by

sinl@d = {wull |/ Hal/a. e

From this it is apparent that when w=w, &="%" and
& magnetic moment initinlly parallel 1o He can preces
about H,. until it becomes antiparallel to He. In other
words, such a moment can have ils orientation relative
to Hy changed most completely when w=uwy 50 ws can
be considered as the resonance frequency of the system

Il one next goes to 4 second rotating coordinate sys-
lem which mtates about H,., with n suftahle Jng‘u]a.r
velocity, the effective field H.,, in the doubly rotating
system can be reduced to zero, In this doubly rotating
conrdinite system the problems become trivial since
there is then no magnatic ficld and consequently no
chanze in the arientation of L THaisthe angular w:]-:u:ii];
about H,. which reduces H.., 1o zero, a must be deter-
mined by

cosB = {uy=—w)/a,

a
0=H.=H. b= (1)
T
Hence, from (7)) ol o is & unit vector parallel to H..,
= —~vH ;= —io=, {11)

where a is the quantity previously defined in Eqg. (8}

Ax in shown in o later sectiom of the present report,
the above considerations apply io a3 gquantem-me-
chanical as well as to a dassical system, Consequently,
either dassically or gquantum mechanically on the
doubly rotating eoordinate system with the two rota-
tionil angular velocities o and @, thers is no effective
resultant feld and the state of the system remains con-
stant in time.

IIT. CLASSICAL INTERPRETATION OF NUCLEAR
RESONANCE EXPERIMENTS

The above can be directly applied to varous problems
arising in nuclear resonance experiments. Although
oxcillating instezd of rolating felds are usually vsed in
thess experiments the problems can l.l!I.'I.'l”_'r' be treated
as ones invelving a rotating field since an oscillating
field is equivalent o two opposite rotating Gelds and
only the component rotating in direction to be able
to give a resanance in Eq. (£) has an important efect
in most problems.?® As & first application the method
can be used to demonstrate the criterion for the rate

' F. Blach and A. J. Siegert, Phys Rev. 57, 522 (1940}
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ROTATING COORDINATES

of change of a field to be "adiabatic," ic, to be such
that a nuclear moment preserves its magnetic quantum
number (classically its angle) relative to the Geld as
the feld is moved. Let the Geld be rotated with angulas
velocity —uwy. Then for this problem, in the notation of
the previous section, H, is zero and ), is the full Geld
i, On the rotating coordinate system then

H,.=(—w/y)k-+Hi (12)

The nuclei will then preserve their arientation relative
to & provided H.,, is approximately equal to i or that

| eog | < Hy, {13}
which can be written alternatively as
[HxH| /eyl {14)

The us= of the rotating coordinate system also
provides a simple pictorial interpretation of the transi-
tion process that oocurs in the molecular beam magnetic
resonance method originally introduced by Rabi' A
singly rotating coordinate system roltating with the
oacillator frequency —w can be used throughout, Prior
to the molecule reaching the rotating held region ),
equals zero and H.,, has the value (Ho—w/ylk. As the
molecule enters the trinsition region where the rotating
field is being established H,. changes. Conditions are
usually such that near resonance the condition of Eq.
{14} applied to H., is violated. Consequently the transi-
tion under such cirtcumstances is not adinbatic and the
nuclear moments do not follow H,. as B, is established.
After H, achieves its full value H,, is {Hy— o/ )+ H i
and the nuclei precess about this effective field. When
the molecules leave the rotating Geld region H,, again
changes too rapidly for the nuclei to follow and they are
left with the orientation relative to the & axis to which
they have precessed in the region of the rotating feld.
At exact resonance this precession is about 2 field H,
which iz perpendicular to the original direction of the
field and consequently the change of orientation can
be large.

The qualitative analysis of the preceding paragraph
cin be also expressed quantitatively. Assume the [
is initially parallel to Hs: Then in the rotating coordinate
system | will precess about H,. with the precession
angle 3 and at an angular velocity a. If o i the angle
between Hy and 1, the simple geometry of the above
preceszion iz such that after a time interval f—1,

posa = cos' B 4200 cosalty—I)

. X _ul:f-;—ll]-
w= 1 — 2 sin*t) sin®——,

{13}

On the other hand, as shown in the next section, the
quantum-mechanical anpuiar momentom  operators
satigfy the same Eq. (1), Since this equation is linear,

* Kusch, Millman, and Rabi, Phys. Rev. 55, 686 (1939);
Kellogy, fahi, Ramsey, and Zacharias, Phys. Rev. 55, 318 (1939).
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the expectation values satisfy the same equation. There-
fore, & correspondence between the classical and
qisantum-mriechanical solutions can be established by
requiring them to agree on their predicted awverage z
component and on the total probability. If £, is the
probability of a system of spin } being in the state of
magrictic quantum number m equal 1o £} these re-
quirements are

Py— P o= o,

(L)
Fit+P=1
Therelare,
l—rcosa wlty—1]
Pj=— — = gin*id sin?
2 2
(ol Ha)? a(ts =i
= gift——_ {17}
(g — ] (el H_n]z 2

As proved in Sec. ¥, this is éxactly the same result that
isabtained from a pure quantum-mechanical caleulation,

Likewise the rotating coordinate syslem analysis
procedure is applicable to the molecular beam resonance
method with separated cscillating fields introduced by
Ramsey." In this case, the description through the first
pscillating field is just the same as in the preceding
paragraph. After leaving the oscillating hetd in this
method the nuclens enters an intermedinte region
where there is only &y so the magnitude of H; is zeno.
Relative 1o the singly roteting coordinate system, the
nucleus in this region precesses about {(Ho—w/ylk
until it reaches the second pacillating field, As a result
afl this precession the nudeus will in general have a
different orientation relative to H,, in the second
rotaling field region than it did in the first. On the
ather hand, if the average value of Hy—w/y in the in-
termediite region = zero the orientation of the nocleus
relative to H,, = the sume in the second o=allating field
rejgion 2% in the first, This will be true regardless of the
velocity of the molecule. Howewer, if the average of
Hy—w/y has any value other than zero, the orientation
of the nucleus relative to H,, in the second field is
different from that in the st and the magnitude of
ihe difference will depend wpon the welocity of the
molecule, When the combined effects of the two rotating
field regions are averaged over the velpcity of the mole-
cules, it is therefore found that the transition prob-
ability &5 2 maximum for @ equal to the average value
of v in the intermediate region.

The rotaling coordinate system procedure is also of
walue in interpreting the vidous nuclear resonance ab-
siarption and induction experiments based on the original
experiments of Purcell" and Rloch® Experiments of
these types have by now been carried out in 2 number
of different ways. One of the marked differences has been

= N. F. Ramsey, Phys. Bev. T8, 685 (1050).
8 Papcell, Toerey, and Pound, Phys. Bev, 89, 37 [15944),
= Blach, Hamsen, and Pockard, Phys, Rev. 6%, 127 {1944}
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in the extent to which the adiabatic condition of Eg.
{14) is satisfied for H... In some experiments a large
value of the rotating field Hy has been used and the
ficld Hy has been varied about the resonance value at
a sufficiently slow rate that Eq. (14) was satished. In
this case the original magnetism,

M:=xHs,, (18)

simply retnins its orientation relative to H.. in the
singly rolating coordinate system and the dominant
effect of the small changes in Hy is to change the orienta-
tion of H,, and bence M, Therefore the z component
of thiz in the rotating sy=tem varies with Hq as

Hu"'-'lﬂ'u"lﬂn
[ e — )+ (el HOET

M, then goes through & resonance maximum @t w=oy.
Howewver, as the goordinate system and hence M, are
rotating with frequency w relative to the laboratory
system, the resulting rotating magnetic moment will
induce a signal in a suitably placed ooil

Actually the preceding case rarely applies since the
local magnetic hields from neighboring molecules cause
the nuclei to return to the thermal equilihrivm relative
to H, and to lose their phase coberency about H,. The
characieristic time constants for these processes are con-
venlidnally designated T and 72! From the point of
view of the singly rolating [rame of reference, T is the
characteristic time for resuming thermal equilibrium
about the = axis, and T is the characteristic time con-
stant for losing coherency about that axis, ie, for the
z and ¥ components of the magnetization (o average
to zero. Although the preceding results are not directly
applicable when these relaxation effects are important,
they are nevertheless of wvilue in many approximate
caleulations even then For example, if TysTy, Texlly
+H,, and (73T 1/vH,, the mte of absorption of
energy at resonance in 4 nuclear resonance absorption
experiment with nuclei of spin 4 can roughly be approxi-
mated by the assumption that the transition goes as in
Eq, {17} but is stopped by the loss of all coherency
after a time T At exact resonance and for o time Ty,
Eqs. (17) and (8) give for the transition probability

P_y=sin®{(vyH\T5/ D=3 HTY. (20)
The average raie W of transiticm per nuchens 15 then
approdmately given by

W=P_JT1=ITJH:HT!- EIIJ

Therelore, the average rate & of net absorption of
energy is approximated by -

R=Wahw= (18 H " TN [k T, {22)

where n,=dNho/kT is the number of surplus nuclei

in the lowest enerpy state, & is the total numiber of

nuclei present, b is the energy separation of the twe
arientation states, and T is the abzolute temperature.

M =M ; cosii= (1)

Other limiting cases with the various relaxation
processes have been discussed in the literature %5 As
has been discussed by Hahn,” the rotating coordinate
system procedure is particularly well suited to the de-
scription of the spin echo phenomena.

IV. QUANTUM-MECHANICAL FORMULATION OF
ROTATING COORDINATES PROCEDURE

Felation (4) derived above can be proved equally
well quantum mechanically as classically. As indicated
in the previous section, one procedure i simply to sy
that Eq. (1) applies to the quantum-mechanical angular
momentum operators. Equation (1) can in fact easily
be proved to follow from the standard operator relation

(/a1 i 32, T)=3c1—Tac, (23}
where the Hemiltonian 30 is taken as
3= —AL-H. (24)

Alternatively, from a wave mechanical point of view,
the Schridinger equation for the problem relative to
a stationary eoordinate system is

i = 500 = — k- TE. {25)

However, in quantum mechanics the fimte rotation
operator™ for the coordinates to be rotated an angle {
ahout an axis along which the system’s angular momen-
tum, I, has the component f; is the unitary operator
exp(irf;). Let % and H be the wave function and
field relative to a stationary coordinate system whereas
&, and I, are the same quantities relative to coordinates
rotating with angular velocity w, These quantities are
related by the unitary transformation so that"

¥=expl—iw- )Y, {20)
I-H, = explio-101-H exp{ —rw- 1) (27)

If Eq. (26) is substituted in Eq. (25) and il Eq. (27) i
used to simplify the resulting expression one immedi-
ately oblains

ik, = —vAl (H,Ao/y) ¥ =—vhl H. ¥, (28)

where H,. is given by Eq. (4), with the understanding
that H is to be expressed relative to the rotating coords-
nate system. This result justifies the application of the
previous discussions to quantum-mechanical as well as
classical systems,

V. QUANTUM-MECHANICAL CALCULATION OF
TRANSITION PROBABILITY

The probabilities for transition of the system from
a state of one magnetic quantum number to another
can readily be caleulated with the above procedure.
Consider the case discussed eardigr in which the mag-

1 Bloembergen, Purcell, and Poond, Phys. Rev. 73, 670 (19481

WE C Kemble, Fundsmeniol Frinciples of um Mec
(MeGraw-Hill Book Company, Inc, New Yok}, pp. 247, T,
and 532
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ROTATING COORDINATES IN

netic fields are given by Eg. (3) and assume that up
o Lime & the magnitude of i, is zero after which it is
Hyuntil tHme £ As ugse will be made of the stationary,
gingly, and doubly rotating coordinate dystems pre-
vigusly discussed, wave functions relative to these three
systems will be designated as ¥ (1), ¥.01), amd ¥ (0,
respectively. Since H,., for the doubly rotating coordi-
nates i zero,

Wy (F) o () =W (1), (29)

However, a3 the doubly rotating system beiween times
t; and f; has rotated an angle —a{ls—1{;) relative to the
singly rotating system one must use the previous finite
rotation operator to relate ¥, (1) and ¥.(4) with the
result that

T, (1) = exp(fal ts— 1 Jo- Ty, i2). (30}
Hence from (29),
T (ta) “ﬂ-'F"r.i'liEh—h}ﬂ 8 LR (31)

In a similar fashion, this can be reduced to & non
rofating coordinate system with the result

Wit:) = exp itk - Dexp(ielfhi— £ Ju- 1)

Wexp(— tk-T(L).  (32)

It should be noted, however, that becavse of the com-
ponents of 1 not commuting, one cannot perform all
the operatipns appropriate to exponenticls of ondinary
numbers: instead, the exponentials may be taken as
defined by their series expansion.

Fram the above, the transition probability from a
state m bo 4 state s’ can be caloulated by tuking ¥ (i)
=T i which case

Picme | (W, (1) |2 = (' | exp (fustik-T)
wexp (ial fs—ty - Dexp (— iwtk - 1) [} |2
= | {m’| exp(ialti—tida-1)|m}|*. (33)

The last simplilving step is & consequence of ¥, &nd
¥ being cigenfunctions of kL
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In general, the numerical evaluation of (33) s some-
whit cumbersome because of the noncommutativity of
the terms in the exponent. However, a series expansion
of the exponential may be used. In the specal case of
spin 4, it becomes much simplified for then 1=},
where o is the Pauli spin matrix. Since for the Pauli
spin matrix («-o)* equals one, the series expansion of
the ahowve exponential together with the series expansion
for sine and cosine merely give

el Lo

I]-{ﬁ_-!],:l . ; 'u:[ri_ 'rI}
== CiX5 @ fn————
afty—5) afty=1i;)
- mﬁLH(a, SO o B Y
2 2
Therefore
a |:-": — | 1
Py =sintE sin® ———, {35)

which is the desired transition peobability that is
applicable to the conventional molecular heam. res-
pnance methed.? It chould be noted that the abowve
agresh with the classically derived expressionin Eq. (17)

This procedure may alse be used to caloulate the
tranzition probability applicabile o the sepecular heam
resonance method with seporated oscillating fields ™ In
this case, Eq. (32} can be applicd scpamitely to the kst
ogcillating field region, to the intermediate egion, &nd
to the second oscillating held region. The resulting thrée
equations can then be combined to express the fnal
state of the system in terms of the initial state and
from this the transition probabilities can be calcalated
as in Eq. (25).

The authors wish to thonk Professor F. Bioch and
Professor E. M. Purcell for many stimulating dis-
cussions of this subject.




